منابع پایان نامه درمورد الگوریتم ژنتیک، ورشکستگی، پیش بینی ورشکستگی

دانلود پایان نامه

دو ارزشی ساخته می شود که در آن به هر گره یک قاعده طبقه بندی اختصاص می یابد. معمولا هر قاعده یک نسبت مالی معین است و یک نقطه انقطاع که هزینه طبقه بندی اشتباه را برای شرکت ها حداقل می کند، به آن اختصاص می یابد. پس از آن که درخت طبقه بندی ساخته شد، ریسک گره های نهایی و ریسک کل درخت محاسبه می شود. برای طبقه بندی هر شرکت جدید، شرکت بر روی درخت فرد آمده و بر روی یک گره نهایی که مشخص کننده عضویت گروه برای یک شرکت خاص و احتمال منتسب به آن است، می نشیند.
بریمن و دیگران44 (1984 ) توصیف کاملی از این روش، شامل تئوری درختان دو ارزشی، قواعد طبقه بندی و غیره فراهم آوردند. فریدمن و دیگران45(1985) برای نخستین بارRPA را به عنوان راه حلی برای تحقیق در مورد مسئله ورشکستگی به کار بردند. هدف این مطالعه معرفیRPA برای پیش بینی ناتوانی تجاری و مقایسه نتایج آن با نتایج حاصل از مدلMDA بود. در این تحقیق نمونه ای متشکل از 58 شرکت صنعتی ورشکسته و 142غیر ورشکسته طی سال های 1981-1971 به صورت تصادفی انتخاب شدند. در این تحقیق 2 درخت طبقه بندی RPA و 2 مدلMDA ساخته و مقایسه شد. نتایج و راندمان درختان طبقه بندیRPA در این مطالعه بسیار مطلوب بود به هر حال مقایسه مستقیم نتایج RPAبا نتایج مدل های MDAبه سادگی امکان پذیر نبود، در حالیMDA که سیستم امتیاز دهی پیوسته ای را به وجود می آورد، RPAگروه هایی از ریسک را برای ناتوانی تجاری فراهم می آورد.
طبقه بندی بازگشتی دارای ویژگی های هر دوی روش های تک متغیره و روش های چند متغیره است. طبقه بندی در یک گروه بر اساس قاعده ای یک متغیره (اگر چه قواعد در شکل ترکیب خطی ویژگی های مالی نیز می تواند به یک گره اختصاص یابد. ) صورت می گیرد. از طرف دیگر در این روش از رشته ای از گره ها یعنی زنجیرهای از نسبت های مالی برای طبقه بندی یک شرکت استفاده می کند. مسیر و هانسن 46(1988) و بینون و پیل47 (2001) از RPAبرای مدل بندی پیش بینی ورشکستگی استفاده کردند.
2-7-9)استدلال مبتنی بر موضوع48: استدلال مبتنی بر موضوع، یک مسئله طبقه بندی جدید را به کمک مسائل حل شده قبلی حل می کند. برنامه های می توانند مستقیما برای پیش بینی ورشکستگی با کاربرد فرآیند 4 مرحله ای خود بکار روند: (1) تشخیص مسئله جدید، (2) بازیابی مسائل حل شده از (مخزن مسائل )، (3) تطبیق مسائل حل شده جهت یافتن راه حلی برای مسئله جدید، (4) ارزیابی راه حل پیشنهاد شده و ذخیره در مخزن مسائل برای کاربرد های آتی. یک روش استدلال قیاسی است که مسائل را با بسط تجربیات یا مسائل حل شده قبلی به یک مسئله حل نشده جدید حل می کند. در مواجهه با مسئله جدید، موارد مشابه ذخیره شده در پایگاه های داده را بازیابی کرده و آنها را با مسائل مناسب تطبیق می دهد. به هر حال مدل های در مقایسه با روش های آماری و سایر روش های مبتنی بر هوش مصنوعی نتوانسته اند از نظر دقت پیش بینی به برتری دست یابند (کومار و راوی49، 2007).
2-7-10) شبکه های عصبی مصنوعی50: شبکه های عصبی مصنوعی(ANN) ابزار مدل بندی انعطاف پذیر و غیر پارامتریک هستند. آنها می تونند هر تابع پیچیده ای را با دقت مورد نظر اجرا کنند. یک شبکه عصبی مصنوعی نوعا از چندین لایه متشکل از تعداد زیادی عناصر محاسبه گر ساخته شده است که این عناصر محاسبه گر را اصطلاحا گره می نامند. هر گره یک سیگنال ورودی از دیگر گره ها، یا ورودی های خارجی دریافت می کند و پس از پردازش سیگنال ها به صورت محلی به واسطه یک تابع تبدیل یک سیگنال تبدیل شده به گره دیگر یا نتیجه نهایی ارسال می کند. ANNها به واسطه ساختار شبکه ها، تعداد لایه ها، تعداد گره ها در هر لایه و چگونگی اتصال لایه ها، دسته بندی می شوند. یکی از رایج ترین ANNها پرسپترون چند لایه ای51(MLP)است که در آن تمام گره ها و لایه ها به صورت پس انتشار مرتب شده اند. نخستین یا پایین ترین لایه، لایه ورودی نامیده می شود که در آن اطلاعات خارجی دریافت می شود. آخرین یا بالاترین لایه، لایه خروجی نامیده میشود، جایی که شبکه مدل راه حل را ایجاد می کند. در این بین یک یا چند لایه مخفی وجود دارد که برایANNها در تشخیص الگوهای پیچیده موجود در داده ها ضروری است. تمامی گره ها در لایه های همجوار با استفاده از کمانی غیر حلقه ای به لایه های بالاتر اتصال داد ه شده اند. پرسپترون سه لایه ای (یک لایه مخفی و یک گره خارجی ) در شکل( 2-1) نشان داده شده است. اینMLP سه لایه ای از رایج ترین ساختار برای مسائل طبقه بندی دو گروهی نظیر پیش بینی ورشکستگی است (لی و دیگران، 2005). نخستین تلاش در جهت استفاده ازANNها برای پیش بینی ورشکستگی توسط آدام و شاردا (1990) صورت گرفت. در مطالعه آنها از شبکه های پس انتشار سه لایه استفاده شد و نتایج حاصل از آن با تحلیل تشخیصی چند متغیره مقایسه شد. پس از آن مطالعات بسیاری از شبکه های عصبی برای پیش بینی استفاده کردند. در این زمینه بخصوص(پیش بینی ورشکستگی) از کاربرد شبکه عصبی معمولا از نسبت های مالی (ویژگی های مالی) به عنوان متغیر های ورودی و وضعیت شرکت(ورشکسته یا غیر ورشکسته) به عنوان خروجی شبکه در نظر گرفته می شوند و در لایه های مخفی الگو ها و روابط موجود بین متغیرهای ورودی و خروجی با توجه به هدف شبکه مشخص می گردد. به این ترتیب شبکه آموزش می بیند. در رابطه با یک مشاهده (شرکت) جدید با استفاده از الگوهای مشخص شده در مرحله آموزشی و نسبت های مالی اقدام به پیش بینی وضعیت آتی می کند.

این مطلب مشابه را هم بخوانید :   مقاله بازگشت به خویشتن و ناسیونالیسم عرب

تصویر(1-2)شبکه عصبی 3 لایه ای پرسپترون
2-7-11) الگوریتم ژنتیک52: در دهه هفتاد میلادی دانشمندی از دانشگاه میشیگان به نام جان هلند ایده استفاده از الگوریتم ژنتیک را در بهینه سازی مهندسی مطرح کرد. ایده اساسی این الگوریتم انتقال خصوصیات مورثی توسط ژن هاست. الگوریتم ژنتیک یک روش جستجوی احتمالی است که از شبیه سازی تکامل زیستی و طبیعی استفاده می کند. الگوریتم ژنتیک با بکار گیری اصل بقای برترین ها برای تولید تخمین های هر چه بهتر یک جواب (کروموزوم ها) روی جمعیتی از جواب های بالقوه عمل می نماید (گولدبرگ53،1989) . مراحل الگوریتم ژنتیک در تصویر( 2-2) نمایش داده شده است. شرح کاملی از مکانیسم و نحوه عملکرد الگوریتم ژنتیک توسط فقیه (1383) ارائه شده است. اولین خصوصیت مثبت الگوریتم دستیابی به نقطه بهینه کلی بجای نقطه بهینه محلی است. یعنی همیشه در حد بسیار مطلوبی می توان به پاسخ این الگوریتم اعتماد کرد و اینکه پاسخی که می باید به احتمال زیاد بهترین پاسخ ممکن است.
علاوه بر این، این الگوریتم به همین شکل موجود در حل انواع مسائل می تواند به کار رود و نیازی به تغییرآن نیست. در واقع تنها کاری که در مورد هر مساله باید انجام دهیم این است که جواب های مختلف را به شکل کروموزوم ها بازنمایی کنیم. اما مشکل اصلی الگوریتم ژنتیک علیرغم سادگی پیاده سازی، هزینه اجرای آن است. اغلب حل یک مسئله نیازمند تولید چندین هزار نسل از کروموزوم هاست و این مسئله نیاز به زمان زیادی دارد و همین امر گاهی استفاده از الگوریتم را با مشکل مواجه می کند. همچنین یکی دیگر از مشکلات الگوریتم ژنتیک این است که این الگوریتم لزوما منجر به بهترین جواب ممکن نمی شود. فرانکو وارتو54 (1998) از الگوریتم ژنتیک برای پیش بینی ورشکستگی استفاده کرد نمونه او متشکل از 500 شرکت، شامل 236 شرکت ورشکسته و264 شرکت غیر ورشکسته است. نتایج این تحقیق بیانگر دقت پیش بینی 93% یکسال قبل از ورشکستگی و 91.6% دو سال قبل از ورشکستگی است. همچنین در این تحقیق با مقایسه مدل الگوریتم ژنتیک و مدل های سنتی پیش بینی، را بر برتری فرایند ژنتیکی داده شد زیرا این مدل علاوه بر فارغ بودن از مفروضات محدودکننده، نسبت به مدل های سنتی از دقت بالاتری نیز برخوردار هستند. در مدل های سنتی با افزایش فاصله زمانی با زمان وقوع ورشکستگی دقت مدل به شدت کاهش می یابد در حالی که این کاهش دقت در مورد مدل هایGA بسیار کمتر است. از دیگر مطالعات انجام شده در این زمینه می توان به شین ولی55 (2002) و مک کی و لنزبرگ56 (2002) اشاره کرد(فرج زاده، 1386) .

تصویر(2-2) مراحل الگوریتم ژنتیک
2-7-12) مدل برنامه ریزی ژنتیک
برنامه ریزی ژنتیک57 (GP) یک روش جستجوی متعلق به خانواده محاسبات تکاملی(EC) است. GPرا می توان به عنوان توسعه یافته الگوریتم ژنتیک در نظر گرفت (کوزا58،1992). اصولاGP الگوریتم ژنتیکی است که بر روی جمعیتی از برنامه های کامپیوتری اعمال می شود. در حالیکه الگوریتم ژنتیک عموما بر روی رشته ای کد شده از اعداد عمل می کند، برنامه ریزی ژنتیک بر روی برنامه های کامپیوتری عمل می کند. برنامه ریزی ژنتیک، در مقایسه با الگوریتم ژنتیک، توانایی بهینه کردن ساختارهای پیچیده تری را داراست و بنابراین می تواند بر روی مسائل متنوعی به کار رود (سته و بولارت59،2001). کزا (1992) شرح کاملی از برنامه ریزی ژنتیک فراهم آورده است. از آنجایی که پیش بینی ورشکستگی جز مسائل طبقه بندی به شمار می رود، در ادامه شرح مختصری از برنامه ریزی ژنتیک با تاکید بر کاربرد آن در طبقه بندی ارائه می شود. به طور کلی مدل های برنامه ریزی ژنتیک (GP) از تئوری تکاملی داروین الهام شده اند. در شکل رایج GP، یک جمعیت اولیه از راه حل های آزمایشی نگهداری می شود سپس از آن که تولید مثل کامل شد، انتظار می رود که جمعیت ایجاد شده راه حل های مناسب تری را برای یک مسئله معین به دست آورد. مدل برنامه ریزی ژنتیک از ساختارهای شبه درختی ای استفاده می کند که می توانند عبارات ریاضی را ارائه کند که کاربرد این مدل را در مسائل رگرسیونی با ارزش می سازد. نمونه ای از چنین ساختار درختی از (GP) در تصویر (2-3) ارائه شده است.

تصویر (2-3) ساختار درختی یک برنامه

سه عملکرد ژنتیک که اغلب در این الگوریتم استفاده می شوند عبارتند از: تولید مثل، تقاطع و جهش. این سه عمل گر نسبت به آنچه پیش از این در مورد الگوریتم ژنتیک بیان شد اندکی متفاوتند.
تولید مثل: عمل گر تولیدمثل به صورت ساده یک برنامه (راه حل) را در جمعیت فعلی انتخاب کرده و آن را بدون تغییر در جمعیت جدید رونوشت (کپی) می کند.
تقاطع: در عمل گر تقاطع دو برنامه (والدین) انتخاب شده و یک زیر درخت از هر کدام از آن ها جدا می شود. پس از آن عمل گر تقاطع گره ها و زیر درخت های مربوط به هر یک از والدین را با دیگری معاوضه می کند. تصاویر2)-4) و (2-5) مثالی از عمل گر تقاطع را در (GP) نمایش می دهند.

تصویر (2-4) نمایشی از عملگر تقاطع(والدین)

تصویر(2-5) نمایشی از عملگر تقاطع(فرزندان)

جهش: عمل گر جهش را می توان بر روی هر یک از گره عملیاتی یا گره نهایی اعمال کرد.یک گره درخت به صورت تصادفی انتخاب می شود. اگرگره انتخاب شده نهایی باشد به صورت کاملا ساده یا یک گره نهایی دیگر جایگزین می گردد. اگر گره انتخاب شده عملیاتی باشد آنگاه با یک گره دیگر که حاوی یک

دیدگاهتان را بنویسید