منابع مقاله با موضوع determination، Interaction

1999. Genetic approaches to study of biofilms. Methods Enzymol. 310, 1- 109.
66. Ophir, T. and Gutnic, D. L. 1994. A role of exopolysaccharide in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 60, 740-745.
67. Pallent, L. J., Hugo, W. B., Grant, D. J. W. and Davies, A. 1983. Pseudomonas cepacia as contaminant and infective agent. J. Hosp. Infect. 4, 13- 15.
68. Ramphal, R. and Pier, G. B. 1985. Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cells. Infect. Immun. 47, 1-4.
69. Roberson, E. B. and Fireston, M. K. 1992. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas species. Appl. Environ. Microbiol. 58, 1284- 1291.
70. Roques, C., Campanac, C., Pineau, L., Payard, A. And Baziard, G. 2002. Interaction between biocide cationic agents and bacterial biofilm. Antimicrob. Agent. Chemother. 46, 1469- 1474.
71. Rosenberg, E. B., Kaplan, N., Pines, O., Rosenberg, M. and Gutnick, D. 1983. Capsular polysaccharides interfere with adhesion of Acinetobacter calcoaceticus to hydrocarbon. FEMS Microbiol. Lett. 17, 157-160.
72. Rosenberg, M. 1984. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett. 22, 289- 295.
73. Rosenberg, M., Gutnick, D. and Rosenberg, E. 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 9, 29-33.
74. Samrakandi, M. M., Roques, C. and Michel, G. 1997. Influence of trophic conditions on exopolysaccharide production: bacterial biofilm susceptibility to chlorine and monochloramine. Can. J. Microbiol. 43, 751-758.
75. Sauer, K. and Camper, A. K. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183, 6579- 6589.
76. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. and Davies, D. G. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140- 1154.
77. Schumacher- perdereau, F., Heilman, C., Peters, G., Gotz, F. and Pulverer, G. 1994. Comparative analysis of a biofilm- forming Staphylococcus epidermidis strain and its adhesion- positive, accumulation- negative mutant M7. FEMS Microbiol. Lett. 117, 71- 78.
78. Schweizer, H. P. 1998. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutation for the study of efflux systems. Antimicrob. Agent. and Chem. 42, 394- 398.
79. Smith, J., McFeters, G. 1997. Mechanisms of INT (2-(4-iodophenyl)- 3(4-nitrophenyl)-5-phenyl tetrazolium chloride), and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12. J. Microbiol. Methods. 29, 161- 175.
80. Sonak, S., Bhosle, N. B. 1995. A simple method to assess bacterial attachment to surfaces. Biofoul. 9, 31- 38.
81. Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., Svabic-Vlahovic, M. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods. 40 (2), 175- 179.
82. Stewart, P. S., Pitts, B., Hamilton, M. A. and Zelver, N. 2003. A microtiter plat screening method for biofilm disinfection and removal. J. Microbiol. Methods. 54, 269- 276.
83. Stewatr, P. S. 2000. Effect of catalase on hydrogene peroxide penetration into Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 66, 836- 838.
84. Suci, P.A., Mittelman, M.W., Yu, F. P. and Geesey, G. G. 1994. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms, Antimicrob. Agents. Chemother. 38, 2125-2133.28
85. Sutherland, I. W. 1983. Microbial exopolysaccharides- their role in microbial adhesion in aqueous systems. Crit. Rev. Microbiol. 10, 173- 201.
86. Tolker- Nielson, T., Brinch, U. C., Ragas, P. C., Anderson, J. B., Jacobsen, C. S. and Molin, S. 2000. Development and dynamics of Pseudomonas spp. Biofilms. J. Bacteriol. 182, 6482- 6489.
87. Van loosdrechet, M. C. M., Lyklema, J., Norde, W. And Zehnder, A. J. B. 1990. Influence of interfaces on microbial activity. Microbiol. Rev. 54, 75-
88. Vandevivere, P. and Kirchman, D. L. 1993. Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl. Environ. Microbiol. 59, 3280- 3286.
89. Videla, H. A. 2002. prevention and control of biocorrosion. Int. Biodeterior. Biodegrad. 49, 259- 270.
90. Wood, P., Caldwell, D. E., Evans, E., Jones, M., Korber, D. R., Wolfhaardt, G. M., Wilson, M. and Gilbert, P. 1998. Surface-catalysed disinfection of thick Pseudomonas aeruginosa biofilms. J. Appl. Microbiol. 84, 1092-1098
91. Wrangstadh, M., Szewyzk, U., Ostling, J. and Kjelleberg, S. 1990. Starvation specific formation of a peripheral exopolysaccharide by a marine Pseudomonas species, strain S9. Appl. Environ. Microbiol. 56, 2065- 2072.
92. Xu, K. D., McFeters, G. A., Stewart, P. S. 2000. Biofilm resistance to antimicrobial agents. Microbiol. 146, 547- 549.
93. Xu, X., Stewart, P. S. and Chen, X. 1996. Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads. Biotechnol. Bioeng. 49, 93-100.
94. Zgurskaya, H. I., Nikaido, H. 2000. Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. 37, 219- 225.
Abstract
Biofilm represent a population that includes interaction between different groups of bacteria. Biofilm can include single species or multiple species of different bacteria. This structure indicates that microorganisms can recruit cell to cell interaction for adaptation themselves with changes of environmental parameters. Biofilms have heterogeneous population of bacterial cells, multilayers that enclosed in polymeric materials and water channels. The aim of this research was the study of biofilm structure, adhesion of biofilm bacteria to the different surfaces in order to determination of surface properties of biofilms bacteria and also assessment of antimicrobial agents potential to biofilm removal and killing of cells that enclosed in biofilm. In this study, at first, the sampling of biofilm was performed from cooling tower systems of Isfahan polyacril manufacture. Then bacteria were isolated and identified. The g+ and g- bacteria were present in the biofilm. Next the study of bacterial cell surface property assessed by MATH, Co- MATH, Bio- MATH, slide method and microtiter plate test. The exploration in biofilms structure was performed by light microscopy and scanning electron microscopy. Also assessment of some biocide efficacy for biofilm removal or killing its cells performed by microtiter plate test. Results of this study show that biofilms bacteria have different surface property. Also bacteria formed biofilm with specific and regular programs and can form very special structures. Also final results show that oxidizing biocides such as hydrogen peroxide and sodium hypochlorite have high potential for biofilm removal (single species biofilms or mix- biofilm) or killing its cells than non- oxidizing biocides such as sulfathiazol or alkyl dimthyl benzyl ammonium chloride. As result, oxidizing biocides are suitable for control of stable biofilm on the surfaces than non- oxidizing biocides. In fact non- oxidizing biocides should apply in order to inhibition the growth of biofilm. Because this biocides can only kill the bacterial cells.
1 . Biofilm
2 . single species
3 . Fruiting bodies
4 . Heterogeneity
5 . Laminar
6 . Turbulent
7 . Extracellular polymeric substances
8 . Colonic acid
9 . Planktonic
10 . Free-floating bacteria
11 . Disinfectants
12 . Plasmids
13 . Conjugation
14 . Toluene
15 . Benzyl alcohol
16 . Transformation
17 . Quorum sensing
18 . Rolling
19 . Creeping
20 . Aggregate
21 . Reversible attachment
22 . Irreversible attachment
23 . Maturation
24 . Detachment
25 . Surface protein releasing enzyme(SPRE)
26 . Alginate lyase
27 . Syntrophism
28 . Gliding motility
29 . Mobile
30 . Cellulolytic
31 . Sulfate reducing bacteria
32 . Surface material
33 . Surface area
34 . Smoothness
35. Flow velocity
36 . Limited nutrients
37 . Biocorrosion
38 . Biofouling
39 . Cleaning processes
40 . Biocides
41 . Coating
42 . Catodic protection
43 . Zoogloea
44 . Corrosion problems
45 . Deposite problems
46 . Chlorine
47 . Bromine
48 . Isothiazolones
49 . Quaternary ammonium compounds
50 . Hypochlorous
51 . NaOCl
52 . Ca(OCl2)2
53 . ClO2
54 . Hypobromous
55 . Biodegradation
56 . Cooling Tower
57 . Phosphate buffer saline
58 . Nutrient agar
59 . Microbial Adhesion To Hydrocarbon
60 . Overnight culture
61 . Tripticase soy broth
62 . Co-adhesion
63 . Test tube
64 . Monitoring
65 . Colorimetric method
66 . Blank
67 . Polystyrene
68 . Scanning Electron Microscopy
69 . SE detector
70 . BSE detector
71 . Mass of biofilm
72 . Percentage Reduction
73 . Regrowth
74 . 2,3,5-Triphenyl tetrazolium chloride
75 . Triphenyl Formazan
76 . ABDAC
77 . Conditioning film
78 . Fibrillar
79 . Microenvironment
80 . Outer membrane proteins
81 . Membrane sensors
82 . Touch receptor
83 . Signaling
84 . Twitching
85 . Surface aggregation
86 . Binary division
87 . Cell cluster
88 . Dehydration
89 . Heterogeneity
90 . Species- specific factors
—————
————————————————————
—————
————————————————————
42
124

پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *